Decrease in Fishery Yields in Response to Hydrological Alterations in the Largest Floodplain Lake (Poyang Lake) in China

Author:

Li Mingzheng,Liu Chang,Liu Fei,Wang Jianwei,Liu Huanzhang

Abstract

Habitat degradation has caused reduction in fishery yields in many freshwater ecosystems, particularly recession of water levels in natural lakes. Poyang Lake, the largest freshwater lake and one of the most exploited regions in China, has exhibited a dramatic variation in the water level for decades, especially after the operation of the Three Gorges Dam. We evaluated the long-term dynamics of fishery yields and the relationship to hydrological variability of Poyang Lake from 1990 to 2016. There was a strong positive effect on the annual maximum water level (Hmax), the minimum water level in April (HMmin4), the maximum water level in August (HMmax8), the average water level in October (HMmean10), and the number of days when the water level was above the wet threshold (Wetdays) on fishery yields. The all-subsets regression model identified the best variable combination subset which contains eight hydrological variables (R2 = 0.9493), and the HMmin4, HMmax8, and HMmean10 variables were the most important variable predictor for fishery yields (contributing to 63.03% of the explained variability). The Mann–Kendall test showed that the time series of the fishery yield of Poyang Lake had significant decreasing trends over the past few decades. Moreover, Wetdays, HMmin4, and HMmean10 also showed significantly decreasing abrupt changes, and the abrupt changes’ time of HMmean10 was the same as that of the fishery yield in 2005. The mean fishery yield and HMmean10 dropped from 42,581 tonnes and 14.15 m during 1990–2005 to 27,464 tonnes and 11.78 m during 2006–2016, respectively. This study is critical for implementing effective strategies for the protection of fish resources and lake ecosystems.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3