Upward Magma Migration Within the Multi-Level Plumbing System of the Changbaishan Volcano (China/North Korea) Revealed by the Modeling of 2018–2020 SAR Data

Author:

Trasatti Elisa,Tolomei Cristiano,Wei Lianhuan,Ventura Guido

Abstract

Changbaishan volcano (China/North Korea border) was responsible for the largest eruption of the first Millennium in 946 CE and is characterized by a multi-level plumbing system. It last erupted in 1903 and presently consists of a cone with summit caldera. An unrest episode occurred between 2002 and 2006, followed by subsidence. Here, we analyze the Changbaishan 2018–2020 deformations by using remote sensing data, detecting an up to 20 mm/yr, NW-SE elongated, Line of Sight movement of its southeastern flank and a −20 mm/yr Line of Sight movement of the southwestern flank. This reveals an unrest occurring during 2018–2020. Modeling results suggest that three active sources are responsible for the observed ground velocities: a deep tabular deflating source, a shallower inflating NW-SE elongated spheroid source, and a NW-SE striking dip-slip fault. The depth and geometry of the inferred sources are consistent with independent petrological and geophysical data. Our results reveal an upward magma migration from 14 to 7.7 km. The modeling of the leveling data of the 2002–2005 uplift and 2009–2011 subsidence depicts sources consistent with the 2018–2020 active system retrieved. The past uplift is interpreted as related to pressurization of the upper portion of the spheroid magma chamber, whereas the subsidence is consistent with the crystallization of its floor, this latter reactivated in 2018–2020. Therefore, Changbaishan is affected by an active magma recharge reactivating a NW-SE trending fault system. Satellite data analysis is a key tool to unravel the magma dynamics at poorly monitored and cross-border volcanoes.

Funder

Istituto Nazionale di Geofisica e Vulcanologia

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3