A Regional Earth System Data Lab for Understanding Ecosystem Dynamics: An Example from Tropical South America

Author:

Estupinan-Suarez Lina M.,Gans Fabian,Brenning Alexander,Gutierrez-Velez Victor H.,Londono Maria C.,Pabon-Moreno Daniel E.,Poveda Germán,Reichstein Markus,Reu Björn,Sierra Carlos A.,Weber Ulrich,Mahecha Miguel D.

Abstract

Tropical ecosystems experience particularly fast transformations largely as a consequence of land use and climate change. Consequences for ecosystem functioning and services are hard to predict and require analyzing multiple data sets simultaneously. Today, we are equipped with a wide range of spatio-temporal observation-based data streams that monitor the rapid transformations of tropical ecosystems in terms of state variables (e.g., biomass, leaf area, soil moisture) but also in terms of ecosystem processes (e.g., gross primary production, evapotranspiration, runoff). However, the underexplored joint potential of such data streams, combined with deficient access to data and processing, constrain our understanding of ecosystem functioning, despite the importance of tropical ecosystems in the regional-to-global carbon and water cycling. Our objectives are: 1. To facilitate access to regional “Analysis Ready Data Cubes” and enable efficient processing 2. To contribute to the understanding of ecosystem functioning and atmosphere-biosphere interactions. 3. To get a dynamic perspective of environmental conditions for biodiversity. To achieve our objectives, we developed a regional variant of an “Earth System Data Lab” (RegESDL) tailored to address the challenges of northern South America. The study region extensively covers natural ecosystems such as rainforest and savannas, and includes strong topographic gradients (0–6,500 masl). Currently, environmental threats such as deforestation and ecosystem degradation continue to increase. In this contribution, we show the value of the approach for characterizing ecosystem functioning through the efficient implementation of time series and dimensionality reduction analysis at pixel level. Specifically, we present an analysis of seasonality as it is manifested in multiple indicators of ecosystem primary production. We demonstrate that the RegESDL has the ability to underscore contrasting patterns of ecosystem seasonality and therefore has the potential to contribute to the characterization of ecosystem function. These results illustrate the potential of the RegESDL to explore complex land-surface processes and the need for further exploration. The paper concludes with some suggestions for developing future big-data infrastructures and its applications in the tropics.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference146 articles.

1. The Dominant Role of Semi-arid Ecosystems in the Trend and Variability of the Land CO2 Sink;Ahlström;Science,2015

2. Improved Long-Term Mean Annual Rainfall fields for Colombia;Álvarez-Villa;Int. J. Climatol.,2011

3. Drivers of Forest Loss in a Megadiverse Hotspot on the Pacific Coast of Colombia;Anaya;Remote Sensing,2020

4. Estado del conocimiento de la biodiversidad en Colombia y sus amenazas. Consideraciones para fortalecer la interacción ciencia-política;Andrade;Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales,2011

5. CDCol: A Geoscience Data Cube that Meets Colombian Needs;Ariza-Porras,2017

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3