Quantifying the spatial flow of soil conservation service to optimize land-use pattern under ecological protection scenarios

Author:

Wang Yudan,Liu Xianfeng,Li Jing,Wang Yida,Bai Jizhou,Zhou Zixiang

Abstract

Land use pattern optimization is an effective approach for sustaining soil conservation service (SCS) under the influence of climate change and anthropogenic activities across the Loess Plateau of China. However, current studies establish ecological protection scenarios (EPSs) for land-use optimization based on the transfer matrix of EPS alone, which ignores the important role of scientific intervention by human beings on land-use patterns. To fill this knowledge gap, the Wuding River watershed was employed as the research object, and land use under three EPSs was simulated according to the transfer matrix, dry-wet zoning, slope, and soil and water loss zoning. The quantity of SCS and its spatial flow and benefit under different climate scenarios were then simulated and compared with those under natural development scenarios (NDSs). SCS was found to decrease due to the expansion of urban areas and agriculture under the NDSs and increase under the EPSs relative to the NDSs. In addition, under the EPSs, SCS restricted to dry-wet zoning exhibited no significant advantage over those without additional constraints. However, when complex constraints, such as dry-wet zoning, slope, and soil and water loss zoning, were combined, SCS was significantly improved in areas with large topographic fluctuations. Further, compared with that in 2000–2020, the benefit of SCS in future scenarios displayed an increasing trend in the direction of the mainstream. Owing to the cumulative benefit, when the spatial flow of the SCS upstream decreases with urban expansion, the benefit for the downstream area, which is provided by land-use optimization, will decrease. Overall, our findings provide a framework for land use optimization by incorporating ecosystem service flow, ultimately facilitating land management, ecological restoration, and soil erosion prevention.

Funder

National Natural Science Foundation of China

Key Research and Development Projects of Shaanxi Province

Fundamental Research Funds for the Central Universities

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3