Magma storage conditions beneath Krakatau, Indonesia: insight from geochemistry and rock magnetism studies

Author:

Pratama Aditya,Nurfiani Dini,Suryanata Putu Billy,Ismail Taufik,Bunga Naen Gabriela Nogo Retnaningtyas,Abdurrachman Mirzam,Supriyadi Banggur Wilfridus Ferdinando,Asri Nining Sumawati,Nareswari Ratika Benita,Bijaksana Satria,Hanif Muhammad,Kriswati Estu,Kurniawan Idham Andri,Setiawan Nugroho Imam

Abstract

Understanding the evolution of magma storage conditions on volcanoes which have had more than one caldera-forming eruption (CFE) is important to know about past and present conditions, as a key to forecast future potential hazards. Krakatau volcano is characterized by cyclic phases of growth and destruction of the edifice. A volcanostratigraphic study identified three eruptive periods: Old Krakatau, Young Krakatau, and Anak Krakatau. The Old and Young Krakatau periods ended with the first and second CFE respectively. Due to its permanent activity and edifice evolution, Krakatau poses a high risk on the surrounding inhabited islands. In this study, we combined geochemistry, rock magnetic, and petrology to infer the evolution of magma storage conditions from Old to Anak Krakatau periods. This study is the first to report on the chemical and rock magnetic characteristics, as well as storage system conditions of Old Krakatau and its relation to the ongoing evolution of Krakatau. Our data show that: 1) Old and Young Krakatau magma storage regions are shallow (within the upper 3 km), contain more differentiated magmas, from which the Old Krakatau magmas may be less oxidized and had lower temperatures than Young Krakatau; 2) Anak Krakatau magma storage is deeper (up to 26 km), less differentiated, and erupted hotter but more reduced compared to Old and Young Krakatau. The Old and Young Krakatau lavas were the products of pre-CFE and their chemical characteristics are included at maturation phase, whereas the Young Krakatau pumice samples were the product of the second CFE. Lastly, the post-second CFE activity of AK is currently in an incubation phase and represented by mafic products of frequent and small eruptions. Knowing that the volcano has experienced maturation and CFE phases in the past, the current AK may evolve to those phases in the future.

Funder

Kementerian Riset dan Teknologi/Badan Riset dan Inovasi Nasional

Institut Teknologi Bandung

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3