Preservation of molecular fossils in carbonate concretions in cretaceous shales in the songliao basin, northeast China

Author:

Lin Lamei,Cheng Fuqi,Xu Jinjun

Abstract

Paleoenvironmental information is better preserved in carbonate concretions. In this study, carbonate concretions in the Cretaceous Nenjiang shale, Songliao Basin, were examined to determine whether molecular fossils reflective of the paleoenvironment were better preserved at these sites. Organic and inorganic geochemical characteristics of the concretions and surrounding rocks were analyzed using a series of techniques, including SEM, LA-ICP-MS, GC-MS-MS, and GC-IRMS. The concretions are composed of high content microcrystalline dolomite. The δ13Ccarb and δ18Ocarb values of the concretionary dolomite were significantly higher than those of the surrounding rocks. The dolomite show enrichment in the LREEs and have a negative Eu anomaly. The concretion biomarkers showed distribution characteristics similar to those of surrounding rocks. This suggested that the molecular fossils preserved in concretions were mainly inherited from surrounding rocks. However, the concretions contained more C27 sterane and hopanes, with the hopane/sterane ratio being significantly higher than that of surrounding rocks (1.49 v. 0.86). Moreover, the relative content of 2-methylhopane was 2.4–6.6 times that of the surrounding rocks. This indicated changes in the biological equilibrium of source organisms within and outside the concretions. It was possible that the unstable organic matter at the core increased the bacterial concentration and activity inside the concretions. Both the hydrogen index and biomarker-derived indicators implied that the transformation of organic matter in concretions was minimized when compared with their host rock. The isotope δ13C16-30 was 1‰–3‰ more prevalent in individual N-alkane hydrocarbons in the concretions than in surrounding rocks, likely owing to differences in lithology, bacterial action, and degree of weathering. The study concluded that carbonate concretions could preserve molecular fossils better than the surrounding rocks, and the in-depth organic geochemical analysis of concretions could provide a valuable reference for research into early life forms.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3