Soil toposequences, soil erosion, and ancient Maya land use adaptations to pedodiversity in the tropical karstic landscapes of southern Mexico

Author:

Sedov Sergey,Rivera-Uria M. Yazmin,Ibarra-Arzave Georgina,García-Ramírez Pamela,Solleiro-Rebolledo Elizabeth,Cabadas-Báez Héctor V.,Valera-Fernández Daisy,Díaz-Ortega Jaime,Guillén-Domínguez Karla A.,Moreno-Roso Sol de Jesús,Fedick Scott L.,Leonard Daniel,Golden Charles,Morell-Hart Shanti,Liendo-Stuardo Rodrigo R.

Abstract

The soil mantle of the tropical karst landscapes of southern Mexico was a key resource for ancient Maya agriculture and experienced deep transformation due to long-term human impacts under changing environmental conditions. We conducted a comparative analysis of three compound soil toposequences in mountainous (Sierra de Chiapas/Middle Usumacinta Valley, Busiljá, and Chinikihá archaeological sites) and platform (NE Yucatán Peninsula, Yalahau region) karst landscapes to reconstruct general tendencies and regional variations in pedodiversity development and soil–human interactions since the Early Preclassic Period. Toposequence characterization is based on macro- and micromorphological observations, accompanied by a suite of laboratory data. Calcareous upland geoforms of all toposequences have similar soil combinations consisting of shallow Rendzina and deep red clayey Terra Rossa types of profiles. We argue that Rendzinas, now dominant in the upland soil cover, in most cases, are not a product of incipient pedogenesis on limestone; they have developed from the residues of Terra Rossa soils after their advanced erosion. Pedosediments generated by ancient soil erosion have been found in the piedmont and depression positions in the mountainous landscapes of Chiapas, as a result of lateral downslope soil removal, and in the subsurface karstic cavities in the platform of NE Yucatán, indicating vertical “soil piping.” The soils of the lowland domains show contrasting differences between the toposequences: gleyic clay–rich soils and humic alluvial soils prevail in Chinikihá and Busiljá, whereas hydromorphic carbonate soils have formed in Yalahau karstic depressions. These differences in the lowland soil properties led to divergent ancient Maya land use strategies; in Chinikihá and Busiljá, the major agricultural domain was developed in the lowlands, implying largescale artificial drainage. On the contrary, in Yalahau, mostly upland Rendzinas were cultivated, implying “precision agriculture” and “container gardening.”

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3