Micro- and nanoplastics in freshwater ecosystems—interaction with and impact upon bacterivorous ciliates

Author:

Bulannga Rendani B.,Schmidt Stefan

Abstract

The ubiquitous occurrence of microplastics and nanoplastics in aquatic environments is of major concern as these priority pollutants are readily ingested by a wide variety of aquatic organisms. Although quantitative data on the interaction of microplastics and even more so on nanoplastics in freshwater environments and their interaction with the aquatic food web are still limited, studies have nevertheless demonstrated that even micro- or nanosized plastic particles can be ingested by various members of the zooplankton functioning as primary consumers. Bacterivorous ciliates are crucial members of the microzooplankton. These fascinating microorganisms are critical components of microbial loops in freshwater environments and are essential links between different trophic levels within the aquatic food web. Ingestion of microscopic plastic particles affects the ciliate cell on a cellular and even on the molecular level. Physical and chemical characteristics such as size, density, and surface properties influence the stability, distribution, retention, transportation, and bioavailability of the microplastic particles for ingestion by ciliates. In turn, the environmental fate of microplastics and nanoplastics can affect their ecotoxicity via surface modifications, such as forming the so-called eco-corona. The consequences of the interaction of ciliates with microplastics and nanoplastics are the potential bioaccumulation of plastic particles through the food web and the possible interference of these emerging pollutants with controlling bacterial and possibly even viral abundance in freshwater environments. Due to the limited data available, studies elucidating the environmental bacterivorous ciliate-micro-/nanoplastics interaction are a priority research topic if we want to holistically assess the environmental fate and ecotoxicity of these pollutants.

Funder

National Research Foundation

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3