Reservoir Parameter Prediction Based on the Neural Random Forest Model

Author:

Wang Mingchuan,Feng Dongjun,Li Donghui,Wang Jiwei

Abstract

Porosity and saturation are the basis for describing reservoir properties and formation characteristics. The traditional, empirical, and formulaic methods are unable to accurately capture the nonlinear mapping relationship between log data and reservoir physical parameters. To solve this problem, in this study, a novel hybrid model (NRF) combining neural network (NN) and random forest (RF) was proposed based on well logging data to predict the porosity and saturation of shale gas reservoirs. The database includes six horizontal wells, and the input logs include borehole diameter, neutron, density, gamma-ray, and acoustic and deep investigate double lateral resistivity log. The porosity and saturation were chosen as outputs. The NRF model with independent and joint training was designed to extract key features from well log data and physical parameters. It provides a promising method for forecasting the porosity and saturation with R2above 0.94 and 0.82 separately. Compared with baseline models (NN and RF), the NRF model with joint training obtains the unsurpassed performance to predict porosity with R2above 0.95, which is 1.1% higher than that of the NRF model with independent training, 3.9% higher than RF, and superiorly greater than NN. For the prediction of saturation, the NRF model with joint training is still superior to other algorithms, with R2above 0.84, which is 2.1% higher than that of the NRF model with independent training and 7.0% higher than RF. Furthermore, the NRF model has a similar data distribution with measured porosity and saturation, which demonstrates the NRF model can achieve greater stability. It was proven that the proposed NRF model can capture the complex relationship between the logging data and physical parameters more accurately, and can serve as an economical and reliable alternative tool to give a reliable prediction.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3