The Geochemical Evolution of Santa Cruz Island, Galápagos Archipelago

Author:

Wilson E. L.,Harpp K. S.,Schwartz D. M.,Van Kirk R.

Abstract

Understanding how ocean island volcanoes evolve provides important insight into the behavior of mantle plumes, how plumes interact with mid-ocean ridges, and potential risks posed to inhabitants as the islands age. In this field-based study of the Galápagos Islands, we use radiogenic isotope ratio, major element, and trace element analysis of >70 new lava samples to document the geochemical evolution of Santa Cruz Island over the past ∼2 million years, as it has been carried away from the plume. Currently, Santa Cruz is a dormant shield volcano in the central archipelago. Previous work indicates that exposed lavas preserve >1 million years of activity in two eruptive units: 1) The older Platform Series, exposed primarily in the northeast; and 2) the Shield Series, which blankets the rest of Santa Cruz and erupted from a WNW trending fissure system. Our new geochemical analyses indicate that the Platform Series lavas are more evolved and isotopically enriched than Shield lavas, but neither as compositionally monotonous nor as isotopically enriched as the younger western Galápagos volcanoes. Santa Cruz formed when the Galápagos Spreading Center (GSC) was closer to the plume than it is today, resulting in enhanced plume-ridge interaction and transport of plume material to the ridge. Consequently, the Platform Series was formed under relatively magma-starved conditions compared to today’s western volcanoes. Magma supply was sufficient for partial fractionation and homogenization of melts in shallow reservoirs, but inadequate to support thermochemically buffered networks like those in the present-day western archipelago. The slight depletion of Platform Series lavas relative to Fernandina reflects entrainment of depleted upper mantle and/or diversion of deep, enriched plume melts to the nearby GSC. The younger Shield Series lavas are even more depleted because plate motion has carried the volcano across the compositional boundary of the bilaterally asymmetric plume into its more depleted zone. Shield Series lavas’ variable, primitive compositions reflect minimal crustal processing in small, ephemeral, poorly supplied magma reservoirs. Unlike the young western shields, the constructional history of Santa Cruz has been controlled to a significant extent by its proximity to the GSC.

Funder

National Science Foundation

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3