Enhanced understanding of changes in tropical cyclones’ landfall frequency over mainland China

Author:

Li Guangxin,Li Qinglan,Zhao Wei,Zhou Guanbo,Qian Qifeng,Qian Chuanhai,He Lunkai

Abstract

The climatological characteristics and interannual variations of tropical cyclones (TCs) making landfall in mainland China during the peak TC seasons (July–October) from 1980 to 2020 are examined using the China Meteorological Administration (CMA) best-track dataset. There were 270 TCs landfalling in mainland China during the study period, with 226 TCs landfalling in South China (SC) and 44 TCs landfalling in East China (EC). During 1980–2020, the number of TCs affecting mainland China gradually decreased, although the trend is not significant. The number of TCs impacting SC is experiencing a significant decrease, while the number of TC affecting EC is stable. Based on the change-point analysis, the TC landfall frequency in mainland China and SC incurred significant decreases in 1995/1996 and 1996/1997, respectively. The significant reduction in the number of landfalling TCs over SC and the insignificant reduction in the TC landfall frequency over mainland China are mainly due to the great reduction in the TC formation frequency over the western North Pacific (WNP). Meanwhile, the yearly mean of TCs’ landfalling latitudes is moving northward slightly, possibly linked to the slight poleward shift of their genesis locations. A large area of negative anomalies in the lower-tropospheric absolute vorticity and positive variations in the vertical wind shear (VWS) over the tropical WNP are possibly responsible for the reduction in TC genesis over the WNP. Moreover, the apparent opposite anomalies of the two variables over the region north of 20°N and south of 20°N might contribute to the slight poleward shift of genesis locations of landfalling TCs during the 41 years. The variations in the large-scale steering flow are favorable for more TCs moving northwestward and making landfall in EC than before. Meanwhile, the decrease in TC landfall frequency over mainland China is found to be significantly correlated to the pronounced warming over the tropical Indian Ocean.

Funder

Guangdong Science and Technology Department

Shenzhen Research and Development Program

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3