Refined assessment of potential evapotranspiration in the tarim basin

Author:

Huo Wen,Zhi Xiefei,Hu Shunqi,Cai Wenyue,Yang Fan,Zhou Chenglong,MamtiMin Ali,He Qing,Pan Honglin,Song Meiqi,Wen Cong,Wang Yu,Yang Xinghua,Meng Lu

Abstract

As an important part of surface hydrothermal process, the study of evapotranspiration has been paid more attention, and it has an important reference value for the optimal allocation of regional water resources. It hinders the accurate assessment of evapotranspiration in arid zones and its response to climate change because human activities have changed the original underlying surface of deserts and increased the complexity of calculations. In this study, the encrypted observations of natural sand land (hereinafter referred to as NSL) and constructed green land (hereinafter referred to as CGL) in the heartland of the Taklimakan Desert were analyzed by the Penman-Monteith-H (PM-H) numerical model to accurately assess the applicability of the evapotranspiration calculation method to different underlying surfaces, analyze the associated errors, and quantify the effects and contributions of the main impacting meteorological factors on the evapotranspiration calculation. Our study finds that the PM-H algorithm exhibits good applicability in Tarim Basin, where the vegetation growth period significantly affects evapotranspiration. The evapotranspiration calculation is positively affected by the difference between saturated and actual vapor pressures and the 2-m mean wind speed and negatively affected by the 2-m mean temperature and gradient of saturated water pressure. Based on high-resolution grid data, the applicability of the PM-H algorithm has been improved, and our calculations show that the mean annual potential evapotranspiration in the Tarim Basin is 2,750 mm.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3