Analysis of overburden movement and side abutment pressure distribution in deep stope with varying coal seam thickness

Author:

Yang Yongjie,Meng Lingren,Yuan Lei

Abstract

To investigate the overburden movement and the side abutment pressure distribution concerning the variation in deep mines with varying coal seam thickness, this study focused on the No. 72 mining area of Tianchen Coal Mine and obtained the following results: Variations in coal seam thickness within a stope lead to increased immediate roof thickness. When the coal seam thickness is 8 m, the maximum immediate roof thickness reaches 18 m. The roof is composed of a “Combined short cantilever-Voussoir beam” structure. Displacement curves of overburden in coal seam thickness-varying stopes exhibit asymmetry, with the overburden closer to the coal seam being more asymmetric. After post-goaf stabilization, the peak side abutment pressure decreases with increasing coal seam thickness and shifts deeper into the coal wall. Concurrently, the ultimate equilibrium area width expands. With an increase in coal seam thickness from 4 m to 8 m, the peak side abutment pressures decreased from 44.98 MPa to 41.04 MPa. The peak position shifted from a distance of 9 m from the coal wall to 14 m, while the stress-relaxation area expanded from 3 m to 5 m. This research provides essential insights for safe and efficient mining in similar conditions.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference27 articles.

1. Research on coal pillar size of gob-side entry driving and surrounding rock control technology in extra-thick coal seam;Gao;Coal Technol.,2022

2. Analysis of the geological causes of coal seam thickness variations;Li;Coal Mine Mod.,2009

3. The migration law of overlay rock and coal in deeply inclined coal seam with fully mechanized top coal caving;Liu;J. Environ. Biol.,2015

4. Study on the law of rock-burst appearance in the area of coal seam thickness variation of Jian-xin mine LiuK. [Bei Jing]Chine University of Mining and Technology2021

5. The occurrence characteristics and the cause analysis of thickness change of 5 coal seam in xintai coal mine;Liu;Sichuan Build. Mater.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3