InSAR-based method for deformation monitoring of landslide source area in Baihetan reservoir, China

Author:

Liu Meishan,Yang Zhiquan,Xi Wenfei,Guo Junqi,Yang Hong

Abstract

As a cascading disaster, the surge caused by the reservoir bank landslide seriously affects the stability of the reservoir bank and the dam body. In addition, large-scale hydropower projects are usually built in mountain and canyon areas with active geological structure movement, which provides rich material sources for the occurrence of landslides, so it is of great significance to monitor the deformation in the landslide source area of the reservoir. As science and technology have been leaping forward, a wide variety of high and novel technologies have been proposed, which can be adopted to monitor landslide deformation. It is noteworthy that InSAR is capable of monitoring target monitoring areas all time under all weathers without the need to install any equipment. In this study, the time series deformation of the main landslide source area of the Baihetan reservoir after water storage was determined based on the time series InSAR method. The average annual deformation rate of the landslide source area of the Baihetan reservoir from April 2021 to January 2023 was determined by combining the Sentinel-1 SAR data of 55 ascending tracks and 46 descending tracks. Moreover, the vegetation cover variations from April 2021 to January 2023 in the study area were determined by combining the remote sensing data of Landsat8-9. A total of four typical source areas were selected based on the field investigation to analyze the deformation monitoring results and the vegetation cover variations. As indicated by the results: 1) After water storage, the slope deformation in all source areas was larger in the short term, and the deformation rate of the lower part turned out to be more significant, and the deformation rate exceeded 334.583 mm/year. 2) On the steep slope, the effect of different types of vegetation on restraining deformation was different. The optimal effect was reported in shrubs, followed by grasslands, and the worst effect was reported in woodlands. The results of this study can provide scientific support for the prevention and control of regional geological disasters.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference47 articles.

1. Evaluation of landslide hazards potential at Dasu dam site and its reservoir area;Ahmed;Environ. Earth Sci.,2023

2. Analysis of surface deformation feature and early identification of potential landslides in the middle reaches of Bailong River based on SBAS-InSAR technology;Bai,2020

3. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms;Berardino;IEEE Trans. Geoscience Remote Sens.,2002

4. Shallow water numerical model of the wave generated by the Vajont landslide;Bosa;Environ. Model. Softw.,2011

5. Applications of UAS-obtained thermal images for vegetation coverage ratio monitoring of mudstone areas;Chen;IOP Conf. Ser. Mater. Sci. Eng.,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3