Tephra fall impacts to buildings: the 2017–2018 Manaro Voui eruption, Vanuatu

Author:

Jenkins Susanna F.,McSporran Ame,Wilson Thomas M.,Stewart Carol,Leonard Graham,Cevuard Sandrine,Garaebiti Esline

Abstract

Building damage from tephra falls can have a substantial impact on exposed communities around erupting volcanoes. There are limited empirical studies of tephra fall impacts on buildings, with none on tephra falls impacting traditional thatched timber buildings, despite their prevalence across South Pacific island nations and parts of Asia. The 2017/2018 explosive eruption of Manaro Voui, Ambae Island, Vanuatu, resulted in damage to traditional (thatched timber), non-traditional (masonry), and hybrid buildings from tephra falls in March/April and July 2018. Field and photographic surveys were conducted across three separate field studies with building characteristics and damage recorded for a total of 589 buildings. Buildings were classified using a damage state framework customised for this study. Overall, increasing tephra thicknesses were related to increasing severity of building damage, corroborating previous damage surveys and vulnerability estimates. Traditional buildings were found to be less resistant to tephra loading than non-traditional buildings, although there was variation in resistance within each building type. For example, some traditional buildings collapsed under ∼40 mm thickness while others sustained no damage when exposed to >200 mm. We attribute this to differences in the pre-eruption condition of the building and the implementation of mitigation strategies. Mitigation strategies included covering thatched roofs with tarpaulins, which helped shed tephra and consequently reduced loading, and providing an internal prop to the main roof beam, which aided structural resistance. As is typical of post-event building damage surveys, we had limited time and access to the exposed communities, and we note the limitations this had for our findings. Our results contribute to the limited empirical data available for tephra fall building damage and can be used to calibrate existing fragility functions, improving our evidence base for forecasting future impacts for similar construction types globally.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3