Author:
Wang Anqi,Yao Zhengquan,Shi Xuefa,Wang Kunshan,Zou Jianjun,Liu Yanguang,Wu Yonghua,Gorbarenko Sergey A.
Abstract
Sea ice in the Okhotsk Sea plays a significant role in global climate change. However, the history and mechanism of changes in sea ice spanning the last glacial cycle remain controversial. In this study, an 8.8 m core (LV55-40-1) was recovered from the southwestern Okhotsk Sea that contains a continuous sea ice record over the past ∼110 kyr. The sand fraction and dropstones were used as ice-rafted debris proxies to reconstruct the history of sea ice variations over the last ∼110 kyr and to determine the underlying causes on orbital and millennial timescales. Sea ice expansions occurred during MIS 5b, MIS 4, mid-MIS 3, and early MIS 1, which were controlled mainly by decreased autumn insolation on an orbital timescale. Superimposed on the orbital-scale changes, millennial-scale variations in sea ice were also observed, with 19 expansion events that coincided with cold Dansgaard-Oeschger stadials. Millennial scale sea ice variations were most likely controlled by both the Arctic oscillation and the East Asian summer monsoon. During periods of negative Arctic oscillation patterns, decreased air temperatures over the Okhotsk Sea caused more active sea ice formation. Such conditions could have been reinforced, by a reduced influence of warm advection at the surface of the Okhotsk Sea caused by decreased discharge from the Amur River that resulted from a weakened East Asian summer monsoon during cold stadials.
Funder
National Natural Science Foundation of China-Shandong Joint Fund for Marine Science Research Centers
National Program on Global Change and Air-Sea Interaction
Taishan Scholar Project of Shandong Province
Russian Science Foundation
V.I. Ilichev Pacific Oceanological Institute, Far East Branch, Russian Academy of Sciences
Subject
General Earth and Planetary Sciences
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献