Study on the correlation between river network patterns and topography in the Haihe River basin

Author:

Xingyuan Zhang,Fawen Li

Abstract

In recent decades, the river network patterns (RNPs) in China’s Haihe River basin have changed dramatically, and the topology of the river network has become increasingly complex. It is important to quantitatively study the correlation between river network patterns and topography (CRNPT) and the changes in the correlation. In this paper, the Haihe River basin was spatially gridded (4 km × 4 km), and different geomorphological areas were extracted for a multiarea study. We selected topographic and river network indicators and proposed new indicators to characterize regional topographic ‘stressfulness’ and then used redundancy analysis for correlation studies. The results showed that the variance of RNP explained by topography was 53.39%. The combined contribution of the topographic wetness index (TWI) and topographic wetness stress index (TSI) ranged from 35.66% to 78.29% in multiple areas, and the TSI showed stronger explanatory power. The regional effect of the CRNPT was significant, with mountains and transition areas having higher effects than plain areas. Compared to the natural river network, the CRNPT of the current river network was significantly lower. Among the RNP indicators, the artificial channel proportion (Pac) had the highest proportion of variance, and the CRNPT was strongly influenced by artificial channels. Artificial channels changed the consistency of topography with the RNP and reduced the topographic interpretation of the RNP, which may weaken the stability and hydrological connectivity of the river network. The variation in interpretation was related to the distribution of artificial channels, which showed a logarithmic function relationship between them.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference77 articles.

1. Reorganization of river networks under changing spatiotemporal precipitation patterns: An optimal channel network approach;Abed Elmdoust;Water Resour. Res.,2016

2. channel networks: A geomorphological perspective;Abrahams;Water Resour. Res.,1984

3. Types of river channel patterns and their natural controls;Alabyan;Earth Surf. Process. Landforms J. Br. Geomorphol. Group,1998

4. Statistical mechanics of complex networks;Albert;Rev. Mod. Phys.,2002

5. Emergence of scaling in random networks;Barabási;Science,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3