Zircon compositional systematics from Devonian oxidized I-type granitoids: examination of porphyry Cu fertility indices in the New Brunswick Appalachians, Canada

Author:

Yousefi Fazilat,Lentz David R.,McFarlane Christopher R. M.,Walker James A.,Thorne Kathleen G.

Abstract

Zircon is a common, widely distributed accessory mineral in most igneous rocks and its refractory nature records magmatic evolution in terms of oxygen and U-Th-Pb isotopes, and trace-element contents all of which reflect the intrinsic physio-chemical evolution of the magmatic systems in which it crystallized. Zircon compositions can be used as an indicator of relative fertility of hypabyssal intrusions in terms Cu ± Mo ± Au porphyry mineralization. To further characterize syn- to post-collisional adakitic Devonian oxidized I-type granitoids in the New Brunswick (specifically, those with Cu ± Mo ± Au porphyry-style mineralization), LA-ICP-MS analyses (guided by µXRF-EDS mapping and SEM-BSE imaging of polished thin sections) of zircons from 13 granitoids was conducted. The zircons studied were similar in terms of their textures (homogenous cores, patchy zoning, oscillatory zoning, and some unzoned zircon); however, they have a wide range of trace- and minor-element (Hf, HREE, Y, Th, U) compositions. Specifically, Zr/Hf ranges between 24–60, whereas Th/U ranges between 0.15 and 5.37. The presence of inherited zircon affects the concentrations of Th and U, as well as other key elements. Estimated crystallization temperatures of granitoids, ranging from 737 to 899°C, were calculated via Ti-in-zircon geothermometry assuming reduced TiO2 and SiO2 activities. The calculated log fO2 values for zircons from some of these granitoids indicate a highly oxidized magmatic signature. Zr/Hf, Eu/Eu, and (Eu/Eu)/Y in zircon, as well as zircon (Ce/Nd)/Y are some of the best indicators of porphyry fertility. The Ce/Ce* in zircon exhibit a large range (1.1–590), with higher Ce/Ce* reflecting more metallogenically favourable oxidizing conditions. If Eu/Eu in zircon is ≥0.4 (relatively oxidized conditions), it indicates a high potential for an ore-forming porphyry Cu mineralizing system. Lower Eu contents reflect relatively reducing conditions, as Eu anomalies vary with oxygen fugacity as well, and the relative abundance of Eu2+ is higher, but does not substitute into the zircon lattice. The evidence extracted from analyzing the zircon composition within New Brunswick’s I-type granitoids indicates the fertility of these hypabyssal intrusions.

Funder

University of New Brunswick

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3