Homeowner flood risk and risk reduction from home elevation between the limits of the 100- and 500-year floodplains

Author:

Al Assi Ayat,Mostafiz Rubayet Bin,Friedland Carol J.,Rohli Robert V.,Rahim Md Adilur

Abstract

Floods inflict significant damage even outside the 100-year floodplain. Thus, restricting flood risk analysis to the 100-year floodplain (Special Flood Hazard Area (SFHA) in the United States of America) is misleading. Flood risk outside the SFHA is often underestimated because of minimal flood-related insurance requirements and regulations and sparse flood depth data. This study proposes a systematic approach to predict flood risk for a single-family home using average annual loss (AAL) in the shaded X Zone–the area immediately outside the SFHA (i.e., the 500-year floodplain), which lies between the limits of the 1.0- and 0.2-percent annual flood probability. To further inform flood mitigation strategy, annual flood risk reduction with additional elevation above an initial first-floor height (FFH0) is estimated. The proposed approach generates synthetic flood parameters, quantifies AAL for a hypothetical slab-on–grade, single-family home with varying attributes and scenarios above the slab-on-grade elevation, and compares flood risk for two areas using the synthetic flood parameters vs existing spatial interpolation-estimated flood parameters. Results reveal a median AAL in the shaded X Zone of 0.13 and 0.17 percent of replacement cost value (VR) for a one-story, single-family home without and with basement, respectively, at FFH0 and 500-year flood depth <1 foot. Elevating homes one and four feet above FFH0 substantially mitigates this risk, generating savings of 0.07–0.18 and 0.09–0.23 percent of VR for a one-story, single-family home without and with basement, respectively. These results enhance understanding of flood risk and the benefits of elevating homes above FFH0 in the shaded X Zone.

Funder

Louisiana Sea Grant, Louisiana State University

Gulf Research Program

U.S. Department of Housing and Urban Development

National Institute of Food and Agriculture

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3