Record of short-lived “orogen” on Eurasian continental margin by South China Sea obduction preserved in Taiwan collision

Author:

Lo Yun-Chieh,Chen Chih-Tung,Lo Ching-Hua,Chung Sun-Lin,Yeh Meng-Wan

Abstract

The Taiwan mountain belt is the result of an arc-continent collision following the total subduction of the South China Sea and subsequent closure of the Luzon forearc, a process important in the accretionary growth of continents. Due to the oblique convergence, the southern tip of Taiwan Island is experiencing incipient collision, which is key to observing the oceanic-continental subduction transition. Within the monotonous turbidite extensively exposed on the Hengchun Peninsula as an uplifted Manila Trench accretionary wedge, the Shihmen Conglomerate, as a few intercalated lenses of coarse mafic pebbles, represents a dramatic change in sediment provenance and the causal tectonic event. New zircon U-Pb and amphibole 40Ar/39Ar ages are obtained from sediments, including sands and mafic pebbles that are either gabbro or foliated amphibolite. The 22–24 Ma zircon crystallization ages confirm the South China Sea origin of the mafic clasts, while the much younger 13 ± 2 Ma amphibole 40Ar/39Ar isochron ages from foliated amphibolites suggest a later thermal-tectonic event other than seafloor metamorphism. The amphibole 40Ar/39Ar ages overlap with the biostratigraphic age (∼11–14 Ma), indicating that the mafic source rocks were exhumed and eroded in a high-relief topography immediately after metamorphism. Detrital zircon U-Pb ages from a sandy layer within the conglomerate are also mostly identical to those from the mafic pebbles. Since the paleocurrent of the Shihmen Conglomerate was similar to that of the neighboring turbidites, which were derived from major rivers draining the southeastern Chinese continent, the provenance of the mafic pebbles and sands was best explained as an isolated subaerial mountain on the Eurasian continental margin with a very limited temporal and spatial extent, as the detrital products are poorly distributed. The most likely cause of the ephemeral mountain was the obduction of the South China Sea onto the Eurasian continental margin when the latter first impinged on the Philippine Sea Plate at the Manila Trench, where the gabbroic oceanic crust was uplifted and exhumed, followed by dynamic metamorphism along the basal thrust.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3