Combination optimization of green energy supply in data center based on simulated annealing particle swarm optimization algorithm

Author:

Liu Xuehui,Hou Guisheng,Yang Lei

Abstract

At present, the high energy consumption of data centers based on grid power supply not only brings huge direct cost of electricity, but also indirectly produces a lot of greenhouse gases, which affects the natural environment. Academia and industry are beginning to introduce clean renewable energy sources such as wind and solar power into data centers to reduce operating costs and environmental damage by building new green data centers. To solve this problem, this study considers the use of waste heat for refrigeration while taking natural gas power generation into account, and introduces wind energy as a green energy source. On the premise of considering the response level of data centers, the two resources are combined and deployed to improve resource utilization and reduce energy consumption costs. Aiming at the instability of wind power generation, a particle swarm energy scheduling optimization algorithm based on simulated annealing algorithm was proposed by combining simulated annealing algorithm and particle swarm optimization algorithm. The research shows that, considering the response level of data centers, the use of natural gas and wind energy as the main energy supply can effectively reduce the overall energy consumption of data centers.

Funder

National Social Science Fund of China

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3