Deformation characteristics and reactivation mechanism of an old landslide induced by combined action of excavation and heavy rainfall

Author:

Dai Zhenwei,Yang Long,Zhang Nan,Zhang Chenyang,Zhang Zhihua,Wang Heng

Abstract

The reactivation mechanism of old landslides has been extensively studied from building load, erosion of the slope toe, heavy rainfall, and slope cutting for existing research. However, previous research on the reactivation of old landslides pays little attention to the combined action of engineering disturbance and heavy rainfall is rarely studied. This paper describes an old landslide in Wushan County, Chongqing, China, that was reactivated in August 2019 due to engineering disturbance and heavy rainfall. The deformation of the old landslide was first observed in 2007 and 2008, resulting from excavation and rainfall, respectively, and remained stable for about 11 years after treatment. In August 2019, the landslide was reactivated by slope cutting and damaged anti-sliding piles at the toe, and entered a state of imminent sliding due to the concentrated heavy rainfall events that occurred from October 4 to 22, 2019. In order to reveal the deformation features and reactivation mechanism of the landslide, field investigations, drilling activities and monitoring were performed. The results showed that tectonic effects and the stratigraphic lithology were the main reasons for the formation of the old Dashuitian landslide. The cut slope and damaged anti-sliding piles at the toe of the landslide provided the sliding space and reduced the anti-sliding force, and therefore resulted in the reactivation of the landslide. Continuous intense rainfall increased the weight of the landslide, decreased the mechanical properties and increased the pore water pressure of the weak interlayer, which accelerated the deformation rate. Therefore, 1.5 million m3 of rock and soil masses slid along the weak interlayer under the action of gravity, threatening the safety of Wuliu Road, Ring Road, National Road G42 and the Wu-Da Expressway. Our research provides a theoretical basis for reducing the hazard of similar engineering projects involving slopes.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference17 articles.

1. Correlation between incompetent beds and slope deformation at Badong town in the Three Gorges Reservoir, China;Chai;Environ. Earth Sci.,2013

2. Research on the mechanism of the ancient landslide resurrection triggered by slope toe excavation;Chen;Northwest. Geol.,2014

3. Landslide types and processes, special report, transportation research board;Cruden;Natl. Acad. Sci.,1996

4. Deformation and failure mechanism of outang landslide in three gorges reservoir area;Dai;J. Eng. Geol.,2016

5. Landslide hazard assessment in the Three Gorges area, China, using aster imagery: Wushan–Badong;Fourniadis;Geomorphology,2007

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3