Upper crust anisotropy of the 2020 Jiashi MS 6.4 earthquake

Author:

Li Jin,Gao Yuan,Zhou Shaohui

Abstract

The 2020 Jiashi MS 6.4 earthquake occurred north of the 1997–1998 Jiashi earthquake swarm. Because of its complex tectonic environment and frequent strong earthquake occurrence, scholars have paid extensive attention to this area. To study the upper crustal anisotropy in the source area, we applied microseismic event detection and shear-wave splitting techniques to the seismic data recorded by five stations around the epicenter. First, the earthquake catalog of the Jiashi MS 6.4 earthquake sequence was rebuilt using the “Match & Locate” method. A total of 9,695 earthquake events were obtained, and the number of newly detected earthquakes was approximately 7.3 times the number in the officially released catalog. The newly identified microseismic data greatly increased the number of effective records and improved the reliability of the results. We analyzed shear-wave splitting according to the updated catalog. The results showed that the dominant polarizations of the fast shear waves were in NW or NNW at the stations BPM, XKR, L6505, and L6513, consistent with the stress near the source area. There are also blind faults with an NNW direction in the strike distributing en echelon and parallel to the main stress direction in the Jiashi seismic area. Thus, the fast shear-wave polarization of the four stations may also reflect the strike of multiple buried NNW faults in the study area. The fast shear-wave polarization of station HLJ, located at the Halajun Basin, was E–W, with the overall trend of the Kalpin thrust nappe structure. However, this station didn’t show the same NW or NNW fast-wave direction as the four stations previously mentioned. This finding may indicate that the NW-trending buried faults in the Jiashi seismic area have a limited size in both the length and the depth, only reaching northward near the second row of the Kapingtag nappe structure. The temporal trend of the delay time at station HLJ showed that a stress-release process occurred before the MS 6.4 earthquake and that stress-release occurred again after the mainshock. At station XKR, the delay time rapidly increased and then fell in the early period after the MS 6.4 earthquake, indicating that stress accumulated rapidly after the main earthquake but was released during the aftershock sequence. This study provides novel insights into the complex structural characteristics and seismogenic environment in the Jiashi area.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference71 articles.

1. Crustal seismic anisotropy in the Tien Shan and adjacent areas;Bao;Chin. J. Geophys.,2017

2. Shear wave splitting changes associated with the 2001 volcanic eruption on Mt Etna;Bianco;Geophys. J. Int.,2006

3. Variations of shear wave splitting in the source region of the Madoi MS 7.4 earthquake, Qinghai;Cao;Chin. J. Geophys.,2022

4. Variations of shear wave splitting in the 2013 Lushan MS 7.0 earthquake region;Chang;Sci. China Earth Sci.,2014

5. Seismic anisotropy and microseismic analysis of the upper crust in the key structural areas of the South-North seismic zone ChenA. G. [Beijing (China)]Institute of Earthquake Forecasting, China Earthquake Administration2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3