Crustal Configuration and Seismic Stability of the Eastern Indian Shield and Adjoining Regions: Insights for Incidents of Great Earthquakes in the Nepal-Bihar-Sikkim Himalaya

Author:

Singh Rashmi,Khan Prosanta Kumar

Abstract

The Eastern Indian Shield (EIS) is comprised of the intracratonic (coal-bearing) Damodar Gondwana basin, rift-controlled extensional Lower Gangetic basin (LGB), and the downward flexed Indo-Gangetic basin (IGB). The present study involves the computations and mapping of the basement configuration, sediment thickness, Moho depth, and the residual isostatic gravity anomaly, based on 2-D gravity modeling. The sediment thickness in the area ranges between 0.0 and 6.5 km, and the Conrad discontinuity occurs at ∼17.0–20 km depth. The depth of the Moho varies between 36.0 and 41.5 km, with the maximum value beneath the Upper Gangetic basin (UGB), and the minimum of ∼36 km (uplifted Moho) in the southeastern part beneath the LGB. The maximum residual isostatic anomaly of +44 mGal in the southern part indicates the Singhbhum shear zone, LGB, and Rajmahal trap to be under-compensated, whereas the northern part recording the minimum residual isostatic anomaly of –87.0 mGal is over-compensated. Although the region experienced a few moderate-magnitude earthquakes in the past, small-magnitude earthquakes are sparsely distributed. The basement reactivation was possibly associated with a few events of magnitudes more than 4.0. Toward the south, in the Bay of Bengal (BOB), seismic activities of moderate size and shallow origin are confined between the aseismic 85 and 90°E ridges. The regions on the extreme north and south [along the Himalaya and the equatorial Indian Ocean (EIO)] are experienced moderate-to-great earthquakes over different times in the historical past, but the intervening EIS and the BOB have seismic stability. We propose that the two aseismic ridges are guiding the lithospheric stress fields, which are being further focused by the basement of the EIS, the BOB, and the N-S extended regional fault systems into the bending zone of the penetrating Indian lithosphere beneath the Himalaya. The minimum obliquity of the Indian plate and the transecting fault systems in the Foothills of the Himalaya channelize and enhance the stress field into the bending zone. The enhanced stress generates great earthquakes in the Nepal-Bihar-Sikkim Himalaya, and on being reflected back through the apparently stable EIS and BOB, the stress field creates deformation and great earthquakes in the EIO.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference141 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3