Mineralogy and Pore Structure of Marine–Continental Transitional Shale: A Case Study of the Upper Carboniferous Keluke Formation in the Eastern Qaidam Basin, China

Author:

Guo Yingchun,Fang Xinxin,Wang Haifeng,Wang Na

Abstract

Organic-rich shale and associated fine-grained sedimentary rocks of marine-continental transitional facies were well developed in the Upper Carboniferous Keluke Formation in the Eastern Qaidam Basin, which is expected to be a set of potential shale gas exploration and development target. Mineralogy and pore structure of marine-continental transitional shale were investigated systematically based on thin-section identification, X-ray diffraction (XRD), helium porosity test and pressure-pulse permeability measurement, scanning electron microscopy (QEMSCAN), field emission scanning electron microscopy (FESEM), and high-pressure mercury injection (MICP) and nitrogen adsorption. Thin section, XRD, and QEMSCAN data suggest that marine–continental transitional shale has complex mineral compositions, resulting in mixed rocks and mixed sequences. FE-SEM images show that interparticle and intercrystalline pores are popular in the Keluke Shales, with minor dissolution pores and microfractures. No secondary organic matter pores occur in the Keluke Shales because organic macerals are dominated by vitrinite and inertinite, where only primary pores can be found among organic matter frameworks. MICP and nitrogen adsorption indicate that pore size distributions follow a bimodal pattern and proportions of micro-scale pores and macro-scale pores increase in an order: bioclastic limestone, argillaceous bioclastic limestone, silty mudstone, argillaceous siltstone. The differences in pore structure are caused by sedimentary facies and associated mineralogy and diagenesis. This study can provide a crucial theoretical guidance for sweet spots determination and deep understanding of transitional shale gas potential.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3