Identification and Quantitative Characterization of Point Bars in Subsurface Meander-River Belt, Taking Chengdao Oilfield in Bohai Bay Basin as an Example

Author:

Yang Bin,Zhang Liqiang,Sun Zhifeng,Yan Yiming

Abstract

Reservoir architecture is an important basis for studying the sedimentary evolution of underground reservoirs and the distribution of remaining oil. Taking meander-river reservoir of Guantao Formation in Chengdao Oilfield as an example, characteristics of the evolution of subsurface meander-belt deposits were studied by seismic sedimentology. Seismic lithology is performed using -90° phase wavelet and frequency fusions; seismic geomorphology is conducted on seismic stratal slices. Six meandering belts were defined in the target layer, and the sediment at the bottom is characterized by the transformation from “braided” river to “meandering” river. The width of meander-river belt has no correlation with the maximum thickness of meander-river belt. But it has obvious negative correlation differences in the minimum thickness of meander–river belt. With the increase of width of the meander-river belt, the minimum thickness of the drilled meander-river belt decreases as a whole. The forward model based on the shape of point bar reveals the seismic architecture characteristics formed by the superposition of sand bodies at different positions of point bars. According to these characteristics, the point bars in the meandering zone can be explained. In the Ng33, Ng42, and Ng45 sub-layers of the study area, the corresponding meander-belt widths where the point bar (or point bar connecting body) cannot be effectively identified by well logging and seismic data, are, respectively, 800, 800, and 500 m. At the same time, when the width of the meander belt is greater than 1000 m, three or more than three point bars (or point bar connecting body) can be basically identified in the meander belt. The width of the point bar segments in the meander belt of the three main sub-layers is mostly 300–400 m, and the maximum width of the point bar segments is about 550 m, while the scale of point bars in Ng45 sub-layer meander belt is relatively small. The quantitative characteristics of point bar debris and the determined location of SBM and SIA sand bodies provide limited and valuable data support for the formation and simulation of underground meandering rivers, which are also useful for the model of the target reservoir.

Funder

National Major Science and Technology Projects of China

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3