Measuring Global Signals in the Potential Gradient at High Latitude Sites

Author:

Tacza José,Nicoll Keri A.,Macotela Edith L.,Kubicki Marek,Odzimek Anna,Manninen Jyrki

Abstract

Previous research has shown that the study of the global electrical circuit can be relevant to climate change studies, and this can be done through measurements of the potential gradient near the surface in fair weather conditions. However, potential gradient measurements can be highly variable due to different local effects (e.g., pollution, convective processes). In order to try to minimize these effects, potential gradient measurements can be performed at remote locations where anthropogenic influences are small. In this work we present potential gradient measurements from five stations at high latitudes in the Southern and Northern Hemisphere. This is the first description of new datasets from Halley, Antarctica; and Sodankyla, Finland. The effect of the polar cap ionospheric potential can be significant at some polar stations and detailed analysis performed here demonstrates a negligible effect on the surface potential gradient at Halley and Sodankyla. New criteria for determination of fair weather conditions at snow covered sites is also reported, demonstrating that wind speeds as low as 3 m/s can loft snow particles, and that the fetch of the measurement site is an important factor in determining this threshold wind speed. Daily and seasonal analysis of the potential gradient in fair weather conditions shows great agreement with the “universal” Carnegie curve of the global electric circuit, particularly at Halley. This demonstrates that high latitude sites, at which the magnetic and solar influences can be present, can also provide globally representative measurement sites for study of the global electric circuit.

Funder

Natural Environment Research Council

Narodowa Agencja Wymiany Akademickiej

Ministerstwo Nauki i Szkolnictwa Wyższego

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference68 articles.

1. Evaluation of the atmospheric boundary-layer electrical variability;Anisimov;Boundary-Layer Meteorol.,2018

2. Electrification of wind-blown sand: recent advances and key issues;Bagnold;Eur. Phys. J. E Soft Matter.,1941

3. Ambient radioactivity and atmospheric electric field: a joint study in an urban environment;Barbosa;J. Environ. Radioact.,2020

4. Measurement of atmospheric electricity during different meteorological conditions;Bennett,2007

5. Large scale monitoring of troposphere electric field;Berlinski,2007

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3