Structural architecture and late Cenozoic tectonic evolution of the Ulsan Fault Zone, SE Korea: New insights from integration of geological and geophysical data

Author:

Cheon Youngbeom,Shin Young Hong,Park Samgyu,Choi Jin-Hyuck,Kim Dong-Eun,Ko Kyoungtae,Ryoo Chung-Ryul,Kim Young-Seog,Son Moon

Abstract

Integration of geological and geophysical data is essential to elucidate the configuration and geometry of surface and subsurface structures, as well as their long-term evolution. The NNW–SSE-striking incised valley and parallel mountain range in the southeastern margin of the Korean Peninsula, extending 50 km from Gyeongju to Ulsan cities, are together regarded as one of the most prominent geographical features in South Korea. This paper presents an investigation into the structural architecture and deformation history of the valley and mountain range during the late Cenozoic based on combined data from field observations and gravity and electrical resistivity surveys. Our results based on integrated and reconciled geological, structural, and geophysical data are as follows. First, the incised fault valley can be divided into 1) the northern part, which comprises several distributed buried or exposed fault strands; and 2) the southern part, which comprises a concentrated deformation zone along the eastern margin of the valley. Different deformation features between the two parts are controlled by the lithology of host rocks and by the location and geometry of the neighboring major structures, that is, the Yeonil Tectonic Line (YTL) and the Yangsan Fault. Second, we defined the Ulsan Fault Zone as a NNW–SSE-to N–S-striking fault within the incised valley and along the eastern margin of the valley. In particular, the constituent strands located along the eastern margin of the valley have acted mainly as an imbricate thrust zone, characterized by an east-side-up geometry with moderate to low dip angles and reverse-dominant kinematics in the shallow subsurface during the Quaternary. Third, reactivated strands within the Ulsan Fault Zone during the Quaternary are interpreted as shortcut faults developed in the footwall of Miocene subvertical structures, predominantly the YTL. In addition, movements on the Ulsan Fault Zone and the YTL during the Miocene to Quaternary were arrested by the NNE–SSW-striking Yangsan Fault, which was a prominent and mature pre-existing structure. Our results highlight the spatiotemporal structural variation in SE Korea and emphasize the strong control of the configuration and geometry of pre-existing structures on the distribution and characteristics (i.e., geometry and kinematics) of the subsequent deformation under changing tectonic environments through the late Cenozoic.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference97 articles.

1. Geophysical studies on major faults in the Gyeongsang Basin: Aeromagnetic and radiometric data interpretation on the Ulsan Fault;Baag;J. Geol. Soc. Korea,1994

2. Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_Plus;Becker;Mar. Geod.,2009

3. Potential Theory in Gravity and Magnetic Applications

4. Structural inheritance in mountain belts: An Alpine-Apennine perspective;Butler;J. Struct. Geol.,2006

5. Movement history of the Yangsan Fault based on paleostress analysis;Chang;J. Eng. Geol.,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3