The seasonal and spatial variability of ammonium uptake in a hilly watershed

Author:

Ye Sheng,Pan Jiajia,Li Jiyu,Yu Tianxue,Ran Qihua

Abstract

Elevated nutrient loading can cause deleterious impacts on aquatic ecosystems such as eutrophication. Seasonal variability and land use change often lead to varied nutrient uptake from streams. However, the impacts of seasonal and spatial variation on stream nutrient transport within the same watershed haven’t been fully understood. Here, we conducted nutrient addition experiments using the Tracer Additions for Spiraling Curve Characterization (TASCC) approach within the Xiaogang Watershed, Zhejiang Province, China. Six of the experiments were conducted in one stream every other month and eight releases in eight different streams to quantify ammonium uptake kinetics across different seasons and land uses. Our findings suggest that the uptake capability increases with both discharge and ambient concentration (C0): seasonal variability of discharge shows small impacts on uptake metrics, except the ambient uptake length (Sw-amb), which increases with discharge; while the change in C0 could have more significant effects on both ambient areal uptake (Uamb) and maximum areal uptake rate parameter (Umax). Downstream the river network, the increase in discharge led to a significant increase in Uamb, ambient uptake velocity (Vf-amb), and Umax. On the other hand, the change in C0 is less influential than discharge along the river network, which may be correlated with the hydraulic geometry. Additionally, there is an optimal temperature (T) for uptake in our study region around 17°C, which may be explained by the growth of chlorophyll a. The positive correlation between Vf-amb and Q at the spatial scale may be attributed to the increase of dissolved organic carbon (DOC) and river chlorophyll a downstream with stream width. In addition, land use had an important effect on ion concentration in streams, and the proportion of agricultural land was positively correlated with nutrient concentration. Our findings could help provide scientific support for land use management and water quality regulation.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference55 articles.

1. The role of headwater streams in downstream water quality;Alexander;J. Am. Water Resour. Assoc.,2007

2. Assimilatory uptake rather than nitrification and denitrification determines nitrogen removal patterns in streams of varying land use;Arango;Limnol. Oceanogr.,2008

3. Translocation of phosphorus in a trout stream ecosystem;Ball,1963

4. Trophic basis of production among net-spinning caddisflies in a southern Appalachian stream;Benke;Ecology,1980

5. N, P and Si retention along the aquatic continuum from land to ocean;Billen,1991

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3