Author:
Qin Fei,Zhang Dongzhou,Qin Shan
Abstract
In the present study, we extensively explored the phase stabilities and elastic behaviors of Cu2O with elevated pressures up to 29.3 GPa based on single-crystal X-ray diffraction measurements. The structural sequence of Cu2O is different than previously determined. Specifically, we have established that Cu2O under pressure, displays a cubic-tetragonal-monoclinic phase transition sequence, and a novel monoclinic high-pressure phase assigned to the P1a1 or P12/a1 space group was firstly observed. The monoclinic phase Cu2O exhibits anisotropic compression with axial compressibility βb > βc > βa in a ratio of 1.00:1.64:1.45. The obtained isothermal bulk modulus of cubic and monoclinic phase Cu2O are 125(2) and 41(6) GPa, respectively, and the KT0’ is fixed at 4. Our results provide new insights into the phase stability and elastic properties of copper oxides and chalcogenides at extreme conditions.
Funder
Foundation for Innovative Research Groups of the National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献