A Gray Wolf Optimization-Based Improved Probabilistic Neural Network Algorithm for Surrounding Rock Squeezing Classification in Tunnel Engineering

Author:

Huang Xing,Yin Xin,Liu Bin,Ding Ziwei,Zhang Chaofan,Jing Boyu,Guo Xiaosheng

Abstract

Surrounding rock squeezing deformation is a common and prominent hazard in tunnel engineering projects, which often induces the shield jamming disaster during the TBM tunneling process. Based on the 139 groups of historical squeezing deformation cases, this study developed a hybrid PCA-IWGO-PNN model for squeezing classification. According to the influencing factors and characteristics of squeezing deformation, the strength-stress ratio, tunnel burial depth, tunnel equivalent diameter, rock mass quality index, and support stiffness were selected to establish the prediction index system of squeezing level. Because the probabilistic neural network (PNN) requires that the input variables are independent, principal component analysis (PCA) was used to preprocess the original data to eliminate the correlation between prediction indexes and achieve dimensionality reduction. The spread coefficient was the critical hyper-parameter in the PNN, and the improved gray wolf optimization (IGWO) algorithm was used to realize its efficient automatic optimization. Then, the PNN model was applied to engineering practice. Only 1 of 20 test samples was misjudged, achieving the 95% prediction accuracy. Finally, the comparison analysis with the artificial neural network (ANN) model, support vector machine (SVM) model, and random forest (RF) model was conducted. Among them, the PNN model achieved the highest prediction accuracy, followed by the artificial neural network (85%), RF (85%), and SVM (80%). In addition, the PNN model had the fastest running speed, which only consumed 5.6350 s, while the running time of ANN, SVM, and RF was 8.8340, 6.2290, and 6.9260 s, respectively. The hybrid PCA-IWGO-PNN model developed in this research provides an effective method for surrounding rock squeezing classification, and it has superiorities in both prediction accuracy and running speed.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3