Snow and meteorological conditions at Villum Research Station, Northeast Greenland: on the adequacy of using atmospheric reanalysis for detailed snow simulations

Author:

Krampe Daniela,Kauker Frank,Dumont Marie,Herber Andreas

Abstract

Reliable and detailed measurements of atmospheric and snow conditions in the Arctic are limited. While modern atmospheric reanalyses could potentially replace the former, the latter can be principally simulated by dedicated snow modelling. However, because the uncertainties of reanalyses and modelling are still exceptionally large at high latitudes, a thorough analysis of the performance of atmospheric reanalyses and the snow model simulations are required. Specifically, we aim to answer the following questions for Villum Research Station (VRS), northeast Greenland: (1) What are the predominant snow and meteorological conditions? (2) What are systematic differences between the modern atmospheric reanalysis ERA5 and in situ measurements? (3) Can the snow model Crocus simulate reliably snow depth and stratigraphy? We systematically compare atmospheric in situ measurements and ERA5 reanalysis (November 2015–August 2018) and evaluate simulated and measured snow depth (October 2014–September 2018). Moreover, modelled and measured vertical profiles of snow density and snow specific surface area (SSA) are analysed for two days where a survey had taken place. We found good agreement between in situ and ERA5 atmospheric variables with correlation coefficients >0.84 except for precipitation, wind speed, and wind direction. ERA5’s resolution is too coarse to resolve the topography in the study area adequately, leading presumably to the detected biases. Crocus can simulate satisfactorily the evolution of snow depth, but simulations of SSA and density profiles, whether driven by ERA5 or in situ measurements are biased compared to measurements. Unexpectedly, measured snow depth agrees better with ERA5 driven simulation than with simulation forced with in situ measurements (explained variance: 0.73 versus 0.23). This is due to differences in snowfall, humidity and air temperature between both forcing datasets. In conclusion, ERA5 has great potential to force snow models but the use of Crocus in the Arctic is affected by limitations such as inappropriate parametrisations for Arctic snowpack evolution, but also by lack of process formulations such as vertical water vapour transport. These limitations strongly affect the accuracy of the vertical profiles of physical snow properties.

Funder

Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference62 articles.

1. A2 photonic sensors: IceCube: Innovative optical system for measurement of the specific surface area (SSA) of snow2016

2. Global precipitation climatology project (GPCP) climate data record (CDR), version 2.3 (monthly) AdlerR. WangJ.-J. SapianoM. HuffmanG. ChiuL. XieP. P. 10.7289/V56971M6National Centers for Environmental Information

3. Evaluating the performance of coupled snow–soil models in SURFEXv8 to simulate the permafrost thermal regime at a high Arctic site;Barrere;Geosci. Model Dev.,2017

4. A physical SNOWPACK model for the Swiss avalanche warning;Bartelt;Cold Regions Sci. Technol.,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3