Revealing historical observations and future projections of precipitation over Northwest China based on dynamic downscaled CMIP6 simulations

Author:

Yang Xianyu,Li Douwang,Yang Zhou,Wu Kai,Ji Luyong,Zhou Ziqiang,Lu Yaqiong

Abstract

The warming climate driven by global change has great potential in altering regional and global hydrologic cycles, thus leading to considerable changes in spatial variability and temporal pattern of precipitation. Northwest China (NW) has witnessed a significant wetting trend over the past decades, while the persistence of this wetting trend and potential changes in precipitation under future climate impacts remains elusive. In this study, long-term meteorological observations were used to probe historical variations of precipitation from 1951 to 2020, and the WRF model was employed as a regional climate model to examine future precipitation patterns over NW. Two 9-year downscaled WRF simulations were conducted comprising of historical (WRF-HIST; 2012–2020) and future climate change scenarios (WRF-SSP585; 2047–2055) using bias-corrected global climate model outputs from Coupled Model Intercomparison Project Phase 6 (CMIP6). Compared with ground observations, the WRF model exhibited strong capability in capturing the spatial pattern and temporal variations of precipitation across the NW. Intense precipitation was mainly found in stations located at northern NW and southeastern NW. Summertime precipitation substantially contributed to annual precipitation over the study region. Future precipitation projections suggest significant decreases of precipitation across the southern and eastern NW, with a stronger reduction magnitude in summer. Further, extreme precipitation events were projected to decrease in spring and summer, suggesting that the NW may become drier and the wetting trend may shift to another pattern in the 2050s under the SSP585 climate scenario. Overall, this study reveals historical and future potential changes in precipitation over NW through a high-resolution, dynamically downscaled dataset from WRF modeling, which in turn will help inform regional mitigation and adaption on potential impacts of future climate change on NW.

Funder

National Natural Science Foundation of China

National College Students Innovation and Entrepreneurship Training Program

Open Research Fund of Key Laboratory of Digital Earth Science

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3