Latitudinal changes in submarine channel-levee system evolution, architecture and flow processes

Author:

Allen Charlotte,Peakall Jeff,Hodgson David M.,Bradbury Will,Booth Adam D.

Abstract

Models of the sedimentary architecture of submarine channel-levee systems and their formative flow processes are predominantly based on studies from low latitude settings. Here, we integrate high-resolution seismic reflection, bathymetry and GLORIA side scan data to document the architecture and interpret the formative processes of a series of ultra-high latitude (72–76°N) submarine channel-levee systems that feed lobe complexes off the Greenland margin. We demonstrate that the sedimentary architecture of the channel-fills are dominated by vertical or near-vertical sediment accumulation, reflecting the lack of, or very limited nature of, lateral migration over time. All the Greenland channel-levee systems show significant cross-sectional asymmetry, and a peak sinuosity of 1.38, on a low gradient slope (∼0.3°). The bounding external levees are very thick (∼200 m) and wide relative to low latitude systems. Comparison of these channel-levee systems with other examples reveals that these characteristics appear to be common to systems in high and ultra-high latitudes, suggesting latitudinal controls in the sedimentary architecture of submarine channel-levee systems. The differences between high- and low-latitude systems is likely due to the interplay of physical forcing (i.e., Coriolis force) and climatic factors that control sediment calibre and flow type, both of which are latitudinally dependent. Several formative mechanisms for supressing the initial phase of lateral migration and subsequent asymmetrical development are proposed, including:i) rapid channel aggradation, (ii) Coriolis forcing causing preferred deposition on the right-hand side of the channel, and iii) variance in flow properties, with traction- and suspension-dominated flows deposited on opposing sides of the channel. We argue that a high latitudinal location of larger channel-levee systems may result in the dominance of vertical stacking of channels, the construction of large external levees, and the development of a low sinuosity planform.

Funder

Natural Environment Research Council

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference176 articles.

1. North Atlantic contourite sand channels;Akhmetzhanov,2007

2. The influence of bend amplitude and planform morphology on flow and sedimentation in submarine channels;Amos;Mar. Petroleum Geol.,2010

3. Late Quaternary sedimentation along a fjord to shelf (trough) transect, East Greenland (68°N);Andrews,1996

4. Morphology and architecture of the present canyon and channel system of the Zaire deep-sea fan;Babonneau;Mar. Petroleum Geol.,2002

5. The kramis deep-sea fan off Western Algeria: Role of sediment waves in turbiditic levee growth;Babonneau,2012

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3