Sedimentary Hydrodynamic Processes Under Low-Oxygen Conditions: Implications for Past, Present, and Future Oceans

Author:

Bruni Elena T.,Blattmann Thomas M.,Haghipour Negar,Louw Deon,Lever Mark,Eglinton Timothy I.

Abstract

Continental margin sediments represent a major global sink of organic carbon (OC), and as such exert a key control on Earth’s climate. Today, OC burial in marine sediments mainly takes place under oxygen-rich water columns, where most OC is stabilized through intimate association with sediment grains and biogenic minerals. In prior episodes of Earth’s past, when large parts of the oceans were anoxic, the mode of sedimentary OC burial must have been very different, however. Present-day analogues indicate that surface sediments accumulating under low-oxygen water columns are often “soupy” in texture. Moreover, most OC occurs in large (100–2,000 μm diameter) organic and organo-mineral aggregates which, due to their low density, are prone to wave- and current-induced resuspension. Upon mobilization, these aggregates can undergo lateral transport within so-called nepheloid layers, and may be translocated hundreds of kilometres, and on timescales of thousands of years. Little is known about processes of formation, resuspension and hydrodynamic properties of these aggregates in oxygen-poor waters, or which factors control their eventual breakdown or burial. The goal of this study is to examine the drivers and biogeochemical consequences of this resuspension on OC cycling in modern, oxygen-depleted, “Semi-Liquid Ocean Bottom” (SLOB) regions. We argue that models of sediment and OM hydrodynamics and redistribution that describe sedimentation processes in oxygenated ocean waters of the modern ocean are a poor analogue for equivalent processes occurring under oxygen-deficient conditions. In the latter, we hypothesize that 1) the abundance of low-density organic-rich particles and aggregates leads to a greater propensity for sediment remobilization at low(er) shear stress, and 2) upon resuspension into low-oxygen bottom waters, remobilized OM may be subject to less degradation (less attenuation) during lateral transport, leading to efficient and widespread translocation to distal centres of deposition. We address specific aspects of the SLOB hypothesis utilizing a combination of literature and new data, focussing on the Benguela Upwelling Region as a model system.

Funder

Eidgenössische Technische Hochschule Zürich

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3