Accuracy assessment of various supervised machine learning algorithms in litho-facies classification from seismic data in the Penobscot field, Scotian Basin

Author:

Narayan Satya,Konka Suresh,Chandra Akash,Abdelrahman Kamal,Andráš Peter,Eldosouky Ahmed M.

Abstract

Litho-facies classification is an essential task in characterizing the complex reservoirs in petroleum exploration and subsequent field development. The lithofacies classification at borehole locations is detailed but lacks in providing larger coverage areas. The acquired 3D seismic data provides global coverage for studying the reservoir facies heterogeneities in the study area. This study applies six supervised machine learning techniques (Random Forest, Support Vector Machine, Artificial Neural Network, Adaptive Boosting, Xtreme Gradient Boosting, and Multilayer Perceptron) to 3D post-stack seismic data to accurately estimate different litho-facies in inter-well regions and compares their performance. Initially, the efficacy of the said models was critically examined via the confusion matrix (accuracy and misclass) and evaluation matrix (precision, recall, F1-score) on the test data. It was found that all the machine learning models performed best in classifying the shale facies (87%–94%) followed by the sand (65%–79%) and carbonate facies (60%–78%) in the Penobscot field, Scotian Basin. On an overall accuracy scale, we found the multilayer perceptron method the best-performing tool, whereas the adaptive boosting method was the least-performing tool in classifying all three litho-facies in the current analysis. While other methods also performed moderately good for the classification of all three litho-facies. The predicted litho-facies using seismic attributes matched well with the log data interpreted facies on the borehole locations. It indicates that the facies estimated in inter-well regions are accurate and reliable. Furthermore, we validated the estimated results with the other seismic attributes to ascertain the accuracy and reliability of the predicted litho-facies between the borehole locations. This study recommends machine learning applications for litho-facies classification to reduce the risk associated with reservoir characterization.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3