Mechanism of Organic Matter Accumulation in Black Shales of the Yuertusi Formation in the Tarim Basin: Insights From Paleoenvironmental Variation During the Early Cambrian

Author:

Wang Yangyang,Chen Jianfa,Shen Weibing,Li Min

Abstract

The paleoenvironment during the Early Cambrian is closely related to the accumulation mechanism of organic matter (OM) from the Lower Cambrian black shales. However, paleoenvironment remains a controversial issue. Here, we reported a lot of detailed data of sedimentary stratigraphy and geochemistry of the Lower Cambrian Yuertusi Formation in the Aksu area, Tarim Basin. The Yuertusi Formation from the Yutixi outcrop consists mainly of silicalite at the base, two sets of black shales, and crystalline dolostone. Based on the redox conditions traced by U/Th, V/Cr, Ni/Co, and V/Sc, the hydrothermal activity traced by Ce/Ce*, Cr/Zr, U/Th, Fe/Ti, and (Fe + Mn)/Ti ratios, as well as paleo-productivity traced by Ba, Cu, Rb/Sr, and other parameters, variations were observed in the depositional environments of the Yuertusi Formation: 1) the silicalite at the base was deposited under an euxinic condition and intense hydrothermal activity. Mo-U co-variation analysis revealed that the north margin of Tarim Basin belonged to the unrestricted marine during the Early Cambrian, 2) the lower black shales were deposited under an oxygen-poor condition and weak hydrothermal activity, and 3) the upper black shales were deposited under oxygen-poor, sub-oxic conditions and almost no hydrothermal activity. Although the hydrothermal activity improved paleo-productivity, the TOC values were low on the whole, which may be due to the intense hydrothermal activity that damaged the formation of source rocks. Comprehensive studies showed a gradually oxidizing environment and weakening paleo-productivity during the Yuertusi Formation deposited. The anoxic conditions were conducive to the preservation of OM, and the high-quality source rocks represented by the black shales of the Yuertusi Formation were formed, especially the first set of black shales. However, the enrichment of OM may be affected by the intense hydrothermal activity.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3