The influence of gold mining wastes on the migration-transformation behavior and health risks of arsenic in the surrounding soil of mined-area

Author:

Chen Yu,Liu Guijian,Zhou Chuncai,Zhou Huihui,Wei Yong,Liu Yuan

Abstract

Understanding the characteristic heavy metals and their migration-transformation behavior in mining areas is essential for the prevention and control of mining pollution. This study selected a gold mine in the Anqing-Guichi ore-cluster region in the Middle-Lower Yangtze metallogenic belt as the research area, the concentrations, and migration-transformation mechanisms of metalloid As and typical heavy metals (Cd, Zn, Pb, Cu, Cr, and Ni) in gold mining wastes (mine tailings and sewage sludge) and the surrounding soil (farmland soil and soil a mining area) were investigated. The results showed that the concentration of As was high in both mining wastes and soils, and the geo-accumulation index values of As in soils ranging from 1.44–6.70, indicated that As pollution was severe in the soil. Besides, a close correlation between the concentration of As and the content of iron was observed by XRF analysis, in conjunction with SEM observations, most As-bearing phases are embedded in Fe, O, and Si compounds. According to EDS and XPS results, the Fe-O-As particle was suggested to be Fe-(oxy)hydroxides with absorbed or co-precipitated As. Furthermore, the arsenic phase observed in the soils were consistent with the weathering oxidation products in the tailings, demonstrating that the mineral particles in the tailings could migrate into soils via atmospheric transport, rainwater leaching, surface runoff, etc., and consequently result in heavy metal accumulation. The sequential chemical extraction result showed that the residual state of As in the soil exceeded 60%, and As posed no risk to low risk according to the Risk assessment code result. However, due to the high concentration and high mobility of arsenic, its environmental impact cannot be ignored even if its bio-accessibility in mined area soil is low.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3