Soil-Water Characteristics and Creep Deformation of Unsaturated Expansive Subgrade Soil: Experimental Test and Simulation

Author:

Yao Yongsheng,Li Jue,Xiao Ziqiong,Xiao Hongbin

Abstract

The creep deformation of expansive soil has been considered as a vital threat to the safety in engineering construction because it may cause serious slope diseases in geological engineering. Meanwhile, since expansive soil usually remains in unsaturated state, its mechanical property is significantly affected by the seasonal environment. Therefore, the nonlinear deformation of expansive soil has received increasing attention, especially the humidity-dependent creep properties. This study focused on the stability of the unsaturated expansive soil subgrade considering rainfall and the creep behavior. Pressure plate extractor and direct shear tests were performed to investigate the hydro-mechanical and creep characteristics of the unsaturated expansive soil. Both the Van-Genuchten and Burgers models were applied to analyze the test results and inserted into the numerical model of the slope under rainfall infiltration. Results show that the compaction degree and the stress state was closely related to the water holding capacity of the expansive soil. The nonlinearity of the creep behavior became increasingly obvious with the increase of time and the stress level. The safety factor of the slope decreased as the rainfall time increased, and the most dangerous slide of the slope moved toward the foot of the slope. Considering the long-term creep process, there was a period of rapid growth in horizontal displacement that is detrimental to the stability of the slope. Besides, the rainfall infiltration could accelerate the slope failure before and after this creep process.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3