Zircon U-Pb geochronology of the Lan Sang gneisses and its tectonic implications for the Mae Ping shear zone, NW Thailand

Author:

Lin Yu-Ling,Lee Tung-Yi,Lee Hao-Yang,Iizuka Yoshiyuki,Quek Long Xiang,Charusiri Punya

Abstract

The Mae Ping shear zone (MPSZ), a major shear zone trending NW-SE in Thailand, is responsible for the left-lateral displacement of the N-S Triassic-Jurassic granitoid and gneiss belt. This displacement is postulated to have contributed to Cenozoic extrusion tectonics. Within the Lan Sang National Park, the MPSZ exposes several intensely deformed lithologies, collectively known as the Lan Sang gneisses. These gneisses have attracted considerable attention for their potential to substantiate the extrusion model. However, the timing of the emplacement of the orthogneiss protolith is still debated. Moreover, the origin and distribution of the Eocene syn-shearing granodiorite within this shear zone are not well understood. To shed light on the magmatic history of the MPSZ, this study utilized zircon U-Pb geochronology to systematically investigate the Lan Sang gneisses. Our findings demonstrate that these gneisses can be categorized into paragneiss and orthogneiss groups. Paragneiss samples feature zircons displaying rounded detrital cores ranging from 3,078 to 450 Ma, with metamorphic rim overgrowth of ca. 200 Ma (most Th/U <0.01). This indicates that their Paleozoic sedimentary protoliths experienced high-grade metamorphism during the Triassic-Jurassic Indosinian orogeny. On the other hand, zircon from orthogneiss samples shows that their magmatic protoliths were predominantly emplaced either around ∼200 Ma or within 45-32 Ma. The Eocene-Oligocene magmatism likely coincided with the proposed Eocene metamorphism. Since these samples were deformed by left-lateral shearing, the left-lateral motion of the MPSZ probably ended after 32 Ma. Eocene-Oligocene magmatic events have also been identified in granite, mylonite, and gneiss samples from other regions along the Sibumasu terrane, including the Three Pagodas, Klaeng, Ranong, Khlong Marui shear zones, and the Doi Inthanon area. The Eocene-Oligocene magmatism was likely linked with the movement of the shear zones and may be responsible for the regional cooling pattern. The spatial and temporal distribution of the Eocene-Oligocene magmatism within the Sibumasu terrane supports the hypothesis that the inward migration of magmatism in the overriding plate resulted from the shallowing of the Neo-Tethyan slab.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3