Biotic and abiotic processes in Ediacaran spheroid formation

Author:

Cañadas Fuencisla,Papineau Dominic,She Zhenbing

Abstract

Organic-rich shales from the uppermost Doushantuo Fm. (South China) record one of the most negative carbonate carbon isotopic excursions in Earth’s history, known as the Shuram excursion, and contain meter to micro-size spheroids. In this study, we use Raman and energy dispersive spectroscopy to identify and describe the most common diagenetic spheroids to refine our understanding of the profound perturbations of the carbon cycle and the evolution of pore fluid chemistry imprinted in the sedimentary Precambrian record, especially in the late Ediacaran. The presence of 13C-depleted carbonate concretions or organic matter (OM) enclosed by lenticular dolomitic structures within the host shale unit suggests OM remineralisation and anaerobic oxidation, resulting in authigenic carbonate precipitation during the earliest stages of sediment diagenesis. Other mineralogical features, however, point to high levels of primary production, such as apatite bands that host spheroidal microfossils with highly fluorescent quartz and OM within abiotic concretions. These observations highlight the importance of considering co-occurring biotic and abiotic processes in explaining the formation of diagenetic spheroids in ancient sedimentary environments. From an astrobiology perspective, the interplay of biotic and abiotic processes reflects the complexity of early life systems and the environments that may exist on other terrestrial planets. Understanding the signatures of biotic and abiotic interactions in the Doushantuo Fm. is crucial for identifying potential biosignatures in extraterrestrial materials, thereby enhancing our understanding of life’s universality and adaptability in diverse and extreme environments.

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3