Experiment research and mechanism analysis on rheological properties of tailings slurry

Author:

Wang Zhiliu,Chen Linlin,Hu Mengxin

Abstract

The particle size and content of tailings are important parameters affecting the rheological properties of tailings slurry. To explore their influence law and mechanism on rheological properties, the experiments of tailings slurry were designed and carried out under different particle sizes and content conditions. The rheological properties of the tailings slurry were quantified in the paper. The Bingham body model was used in the texperiment. The “double 30” theory (“particle size of 30.0 μm” and “content of 30%“) was proposed and expounded. The corresponding theoretical model is established to analyze the mechanism of the above results. The conclusion is as follows. The tailings slurry agreeed to different rheological models with different particle size and content. The rheological behavior of the tailings slurry conforms to the Herschel-Bulkley model for the tailings, whose particle size is no larger than 30.0 μm and content is no larger than 30%. With the increase of the content of fine tailings, its behavior agrees better with the Bingham model. The yield stress and viscosity of tailings slurry in the process of transportation are in accordance with the laws of “double 30” theory. “Particle size of 30.0 μm” and “content of 30%” is the critical point of rheological characteristics of tailings. Based on the obtained results, the corresponding theoretical model was established to discuss the mechanism. The rheological laws of tailings slurry can provide theoretical guidance for reducing pressure and preventing pipeline wear in the process of tailings cementation discharge and pipeline transportation in an iron mine.

Funder

Zhongyuan University of Technology

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3