Study on the influence of the tectonic evolution of Shuangyashan Basin on gas occurrence and extraction in mines

Author:

Lan Tianwei,Zhang Zhijia,LE QUY BAO,Liu Yonghao,Wang Shunxiang

Abstract

The formation and later evolution of coal-bearing basins in eastern Heilongjiang are controlled by multi-phase tectonic movements, and the Shuangyashan Basin is tectonically located at the southern end of the Sanjiang Basin in the northeast. The paper focuses on the regional geological and tectonic evolution of the Shuangyashan Basin and its influence on the gas occurrence law and extraction difficulty of the Jixian Coal Mine. The study determined that the gas occurrence of the mine in the Suibin-Jixian depression basin has regional aggregation and caprock sealing characteristics. The gas pressure and content of the 9# Coal Seam were measured in the underground test, and the results showed that the 9# coal seam is a hard-to-extract coal seam with low permeability. Aiming at the issue of hard-to-extract gas in 904 Working Face of 9# Coal Seam which is affected by depression basin and derived secondary tectonic conditions, numerical calculation and analysis of gas extraction effect of working face with different extraction parameters were carried out by COMSOL software, the results showed that: negative extraction pressure has less influence on gas extraction effect under basin conditions; when 113 mm diameter borehole is used for gas extraction, gas pressure decreases to 0.72 MPa; when the spacing of extraction borehole is 2 m, the gas pressure is reduced by 20%; when the coal seam permeability is increased by 10 times to more than 0.015 mD, the gas pressure is reduced by more than 50%. The optimized gas extraction scheme with 113 m diameter, 2 m borehole spacing, and 15 kPa negative pressure was proposed for the test working face, and combined with supercritical CO2 fracturing and permeability enhancement technology. Under underground measurement, the coal seam gas content was reduced by 39.7% compared to the original gas extraction scheme. It can be seen that the reasonable gas extraction scheme and coal seam pressure relief and permeability enhancement technology can significantly improve the gas extraction rate, and the extraction effect is remarkable.

Funder

Liaoning Revitalization Talents Program

Scientific Research Fund of Liaoning Provincial Education Department

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3