Mineral Leaching Modeling Through Machine Learning Algorithms − A Review

Author:

Saldaña Manuel,Neira Purísima,Gallegos Sandra,Salinas-Rodríguez Eleazar,Pérez-Rey Ignacio,Toro Norman

Abstract

Artificial intelligence and machine learning algorithms have an increasingly pervasive presence in all fields of science due to their ability to find patterns, model dynamic systems, and make predictions of complex processes. This review aims at providing the researchers in the mineral processing area with structured knowledge about the applications of machine learning algorithms to the leaching process, showing the applications of techniques such as artificial neural networks (ANN), support vector machines (SVM), or Bayesian networks (BN), among others. Additionally, future perspectives are indicated, emphasizing both the generalization of the algorithms and the productive potential of the application of modeling, simulation, and optimization of the tools studied to industrial processes.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3