Dissolved Organic Carbon (DOC) in Ground Ice on Northeastern Tibetan Plateau

Author:

Yang Yuzhong,Guo Xiaoyan,Wang Qingfeng,Jin Huijun,Yun Hanbo,Wu Qingbai

Abstract

Ground ice in permafrost stores substantial amounts of dissolved organic carbon (DOC) upon thaw, which may perpetuate a carbon feedback in permafrost regions, yet little is known to date about the dynamics of DOC and source variability of ground ice on the Tibetan Plateau. Here, the high-resolution data of DOC in ground ice (4.8 m in depth) from two permafrost profiles on the Northeastern Tibetan Plateau (NETP) were firstly presented. We quantified the DOC concentrations (mean: 9.7–21.5 mg/L) of ground ice and revealed sizeable—by a factor of 7.0–36.0—enrichment of the ground ice relative to the other water elements on the TP. Results indicated remarkable depth differences in the DOC of ground ice, suggestive of diverse sources of DOC and different sequestration processes of DOC into ice during permafrost evolution. Combined with DOC and carbon isotopes (δ13CDOC), we clarified that decomposition of soil organic matter and leaching of DOC from organic layers and surrounding permafrost sediments are the important carbon sources of ground ice. The DOC sequestration of ground ice in the upper layers was related to the active layer hydrology and freeze–thaw cycle. However, the permafrost evolution controlled the decomposition of organic carbon and sequestration of DOC in the deep layers. A conceptual model clearly illustrated the dynamics of DOC in ground ice and suggested a significant impact on the carbon cycle on the NETP. The first attempt to explore the DOC in ground ice on the NETP is important and effective for further understanding of carbon cycle under permafrost degradation on the Tibetan Plateau.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3