Climate Change and Reservoir Impacts on 21st-Century Streamflow and Fluvial Sediment Loads in the Irrawaddy River, Myanmar

Author:

Sirisena T. A. J. G.,Maskey Shreedhar,Bamunawala Janaka,Ranasinghe Roshanka

Abstract

Reservoirs play a vital role in water resource management, while also contributing to alterations in downstream flow regimes and sediment load in the river. On the other hand, variations on streamflow and fluvial sediment loads can also result from climate change effects. Here, we assess future changes in streamflow and sediment load due to climate change and planned reservoirs in the Irrawaddy River Basin, Myanmar. The Soil Water Assessment Tool is used to project streamflow and sediment loads during 2046–2065 (mid-century), and 2081–2100 (end-century) periods under the two end-member Representative Concentration Pathways (i.e., RCP 2.6 and RCP 8.5) with and without planned reservoirs. Results show that compared to the baseline period (1991–2005), streamflow and sediment loads are projected to substantially increase during mid- and end-century periods when planned reservoirs are not considered (i.e., with climate change forcing only). Under RCP 2.6 and RCP 8.5, streamflow at the basin outlet is projected to increase by 8–17% and 9–45%, while sediment loads are projected to increase by 13–26% and 18–75%, respectively by the end-century period. When reservoirs are included, while annual streamflow at the basin outlet does not show a significant difference compared to the climate change only case (for any RCP and for both future time periods considered), annual sediment loads at the basin outlet are projected to slightly decrease (compared to the climate change only case) by 4–6% under RCP 8.5 during the end-century period. However, at seasonal time scales, streamflow and sediment loads at the basin outlet are significantly affected by upstream reservoirs. During the monsoon periods, the presence of planned reservoirs is projected to decrease streamflow at the basin outlet by 6–7%, while during non-monsoon periods, the reservoirs result in an increase of 32–38% in the streamflow at the outlet under RCP 8.5 during the end-century period. Similarly, for the same period and RCP 8.5, due to the planned reservoirs, sediment load is projected to decrease by 9–11% and increase by 32–44% in monsoonal and non-monsoonal periods, respectively.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference74 articles.

1. Development of hydropower energy in Turkey : the case of Coruh river basin;Akpınara;Renew. Sustain. Energy Rev.,2011

2. Soil & water assessment tool: input/output documentation, version 2012. texas water resour. institute, TR-439-650 ArnoldJ. G. KiniryJ. R. SrinivasanR. WilliamsJ. R. HaneyE. B. NeitschS. L. 2012

3. Large area hydrologic modeling and assessment part I: model development;Arnold;J. Am. Water Resour. Assoc,1998

4. Multi-model climate change projections for Belu River basin , myanmar under representative concentration pathways;Aung;J. Earth Sci. Clim. Chang,2016

5. Impact of climate change on sediment yield for Naran watershed, Pakistan;Azim;Int. J. Sediment Res.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3