Snow cover evolution at Qasigiannguit Glacier, southwest Greenland: A comparison of time-lapse imagery and mass balance data

Author:

Messerli Alexandra,Arthur Jennifer,Langley Kirsty,How Penelope,Abermann Jakob

Abstract

In a warming climate, understanding seasonal fluctuations in snowline position is key to accurately predicting the melt contribution of glaciers to sea-level rise. Snow and ice conditions have a large impact on freshwater availability and supply on seasonal and multi-annual timescales. Factors such as snow extent and physical characteristics affect predictions in snowmelt- and glacier-fed catchments, influencing the potential of hydropower and drinking water supply in these areas, as well as ecosystems and fjord waters. Summer snow monitoring on glaciers and ice caps peripheral to the Greenland Ice Sheet are limited, and are typically excluded from ice-sheet wide assessments. Here, we analyse snow extent evolution on Qasigiannguit Glacier (QAS), a small coastal mountain glacier in Kobbefjord, southwest Greenland, with the aim of obtaining a baseline dataset of snow and ice conditions. Maximum snowline altitude and bare ice extent are extracted using terrestrial time-lapse photogrammetry, and compared to mass balance and automated weather station observations since 2014. The number of days of visible bare ice, cumulative Positive Degree Days (PDD) and mass balance are closely linked, with 2016 and 2019 experiencing the most negative mass balance, earliest onset of PDDs and greatest cumulative PDDs. 2021 had a relatively small negative mass balance (−0.072 m w.e.) despite having the longest bare ice exposure (112 days). This is attributed to the timing of bare ice exposure relative to the mean 90% cumulative PDD (28th August). Longer periods of bare ice exposure precede the mean 90% cumulative PDD in both 2016 and 2019, which reflects differences in the amount of melt energy available at different times in the melt season. This has far reaching implications for mass balance modelling efforts as this study demonstrates that spatial and temporal variability in snow/bare ice cover are linked to differences in melt factors and energy required to melt snow and ice. Snowline position provides a coarse indication of surface conditions, but future modelling efforts need to incorporate the complex spatial evolution of snow-to-bare ice ratios in order to improve estimates of mass loss from glaciarised mountain catchments.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3