Quantitative Evaluation of Coseismic Deformations Induced by Seismogenic Faulting in Mining Exploration Area During the 2018 Xingwen and 2019 Changning Earthquakes, Sichuan, China

Author:

Sun Chunwei,Ling Sixiang,Zhao Siyuan,Wen Hong,Wang Sen

Abstract

In the period between December 2018 and July 2019, a series of earthquakes (EQs), including the 16 December 2018 Ms 5.7 Xingwen mainshock and the 17 June 2019 Ms 6.0 Changning mainshock, struck the Changning shale gas exploration field in the southern margin of the Sichuan Basin. The Xingwen and Changning EQs both occurred on concealed faults, which led to hundreds of casualties, and affected a total of over 160 thousand people in southern Sichuan. The aftershock sequences following the Xingwen and Changning EQs were clustered in the vicinity of the Jianwu syncline and Changning anticline, respectively, and occurred mostly at depths of 3–7 km. In this study, coseismic surface deformation measurements obtained through differential interferometric synthetic aperture radar (D-InSAR) data were used to identify the faulting geometries and distributions. The coseismic deformation maps have maximum line-of-sight (LOS) displacements of ∼4.53 cm on the northwest side of the Xingwen EQ source fault and ∼7.84 cm on the southwest side of the Changning EQ source fault. The calculated static Coulomb stress changes indicated that most aftershocks occurred in increasing stress zones following the mainshock ruptures. From the InSAR deformation field, a complicated concealed seismogenic doublet fault was inferred, which predominately exhibited left-lateral strike-slip motion during the Xingwen and Changning EQs. The footwall ramp of the basement fault reactivated first, and resulted in the Xingwen EQ and concentrating stresses beneath the Changning anticline, which induced the Changning EQ half a year later. Compared with previous studies, we proposed that the fault network was lubricated by water that was injected during shale gas exploration, facilitating the occurrence of the Xingwen and Changning EQs. Such work evaluated the coseismic deformations of the Xingwen and Changning EQs, and derived the regional faulting distribution from aftershock sequences. It could provide useful information for monitoring and analyzing seismic activity around the hinge zones of folds in mining exploration areas, which contributes to effective risk assessment of disasters associated with seismic geo-environments.

Funder

National Natural Science Foundation of China

Sichuan Province Science and Technology Support Program

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3