Mineralogy of Nickel and Cobalt Minerals in Xiarihamu Nickel–Cobalt Deposit, East Kunlun Orogen, China

Author:

Han Yixiao,Liu Yunhua,Li Wenyuan

Abstract

Located in the East Kunlun Orogen, China, the Xiarihamu magmatic nickel–cobalt sulfide deposit is the country’s second largest deposit of this type. It was formed in special early Paleozoic with low copper grade (0.14 wt%) compared with other deposits of the same type. The mineralogy of nickel and cobalt minerals, which are direct carriers of these elements, can clearly reflect their behavior in the process of mineralization; however, such information for this deposit remains unreported. In the present study, we use an electron microscope and electron probe microanalyzer to delineate and analyze many nickel and cobalt minerals such as maucherite, nickeline, cobaltite, violarite, gersdorffite, parkerite, and arsenohauchecornite in various rocks and ores. With the increase in crustal material contamination, it can reach arsenide saturation locally in sulfide melt, then a separate Ni-rich arsenide (bismuth) melt exsolves somewhere. This melt will crystallize into nickeline, parkerite, arsenohauchecornite, and maucherite first. Second, most of nickel and cobalt tend to enter cobaltite and pentlandite phases, rather than existing in chalcopyrite and pyrrhotite phases as isomorphism during sufficient fractional crystallization of sulfide melt, which gathered nickel and cobalt elements widely. Also, more than one magma might result in the superposition of ore-forming elements. Later, the ore-forming elements redistribute limitedly through a hydrothermal process. The metallogenic mechanism model of nickel and cobalt established in the present study not only explains the process of nickel–cobalt mineralization in Xiarihamu but also can be applied to similar deposits and has a wide universal replicability.

Funder

Fundamental Research Funds for the Central Universities, CHD

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3