Lithospheric thinning beneath the Tengchong volcanic field, Southern China: Insight from Cenozoic calc-alkaline basalts

Author:

Chen Kefei,Liu Shaolin,Yang Dinghui,Xu Xiwei,Wu Yadong,Yang Shuang,Yang Shuxin,Zhang Haodong

Abstract

The Tengchong Cenozoic volcanic field lies in SE margin of the Tibetan Plateau. The basalts of the Tengchong field exhibit evident spatial-temporal variations, but consensus on their meaning has not been reached yet. In this study, we collected basalts from western, central and eastern areas in the Tengchong volcanic field and measured the whole-rock and olivine major and trace elements of basalts. Tengchong basalts exhibit remarkable chemical and isotopic diversity, showing a strong correlation with eruption locations and ages. Specifically, basalts in the western and eastern areas (formed at 7.2–2.8 Ma) are characterized by high 87Sr/86Sr and low 3He/4He ratios, while those in the central area (formed at 0.6–0.02 Ma) feature low 87Sr/86Sr and high 3He/4He ratios. Based on the temperature- and pressure-dependent elemental partition coefficients, this phenomenon is interpreted as mainly caused by the difference in lithospheric thickness among these areas. On the one hand, the estimated primary magmas in the eastern and western areas show higher SiO2, Na2O, (La/Sm)N, Hf/Lu and Ba/Zr ratios than those in the central area. On the other hand, the Ni contents in olivine phenocrysts are higher in the western and eastern areas than in the central area. As different amounts of extension result in different degrees of decompression of the asthenosphere, finally influencing the compositional variation of magmas, these results indicate that the lithosphere in the eastern and western areas is thicker than that in the central area. In addition, basalts erupted in the eastern and western areas are older than those in the central area, suggesting lithospheric thinning. We propose that lithospheric extension due to slab rollback may have caused lithospheric thinning. In addition, according to the different deformation modes of the crust and lithospheric mantle, our study supports mantle-crust decoupling south of ∼26°N in SE margin of the Tibetan Plateau.

Funder

Institute of Geology and Geophysics, Chinese Academy of Sciences

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3